
9240 J. Am. Chem. Soc. 1992, 114, 9240-9241 

involved.10 The calculated bond lengths for HBCBH are ap­
propriate for a linear molecule with two carbon-boron double 
bonds. 

The ab initio calculated vibrational frequencies are also listed 
in Table I. The calculated i/BCB frequencies for all isotopes are 
converted to the observed frequency values by a constant scaling 
factor of 0.930, which is expected for SCF calculations. The 
calculated P611 frequencies require a scale factor of 0.928; the 
failure to observe this mode in CH 4 experiments is probably due 
to parent molecule absorptions. The excellent prediction of isotopic 
frequencies by scaled SCF calculations confirms the identification 
of H B = C = B H . 

The mechanism for reaction of B atoms with CH 4 will be 
considered in detail after all of the products are identified. 
Semiempirical calculations predict that B inserts into a C-H bond 
in CH 4 without activation energy." Two successive B atom 
insertions into C-H bonds in methane, which must be highly 
exothermic reactions, followed by H2 elimination are required for 
the formation of HBCBH. 

None of the frequencies reported for carbon-boron double bonds 
are due to an isolated C = B subgroup.2-3 The present SCF/DZP 
calculations predict antisymmetric and symmetric B = C = B 
stretching modes at 2012 and 1196 cm"', respectively. The average 
value scaled by 0.93 is 1492 cm""1, which represents a prototype 
C = B subgroup stretching fundamental. It is perhaps noteworthy 
that SCF/DZP calculations for H 2 C=BH predict the double-bond 
stretching mode at 1608 cm"1, which scales (X 0.93) to 1495 cm"1. 
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Formaldehyde is a toxic substance ubiquitous in living systems 
and the environment.1 From dietary sources alone, the average 
adult human consumes up to an estimated 14 mg of formaldehyde 
per day.1 Formaldehyde is a DNA-denaturing2 and interst-
rand-cross-linking agent.3 We report here that formaldehyde 
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Figure 1. Autoradiogram of DPAGE analysis of interstrand-cross-linked 
products from formaldehyde-treated partially 5'-32P-labeled [5'-d-
(TACAACN4GTTGT)]2, N4 as indicated.4 
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Figure 2. DPAGE analysis of partially 5'-32P-labeled, formaldehyde-
cross-linked [5'-d(TACAACATATGTTGT)]2 following treatment with 
iron(II) EDTA/ascorbic acid/H202

5 reveals indicated sites of interstrand 
cross-linking. 

preferentially forms dA-to-dA cross-links as in 1 at the dinucleotide 
sequence 5'-d(AT) in certain AT-rich sequences of duplex DNA. 
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A panel of self-complementary, 5'-32P-radiolabeled duplexes 
5'-d(TACAACN4GTTGT) (Figure 1) was exposed to 25 mM 
formaldehyde (pH 6.0, 25 mM NaCl, 50 mM sodium phosphate 
buffer, 25 0 C , 9 days). Each of the duplexes afforded several 
interstrand-cross-linked products (DPAGE), but the duplexes 
containing N 4 = ATAT and AATT preferentially afforded re­
spectively two equiabundant products and one product, consistent 
with cross-linking centered on the shared 5'-d(AT) sequence.4 A 

(4) Single strands and end-cross-linked products common to all DNAs are 
omitted in Figure 1 (see: Weidner, M. F.; Sigurdsson, S. Th.; Hopkins, P. 
B. Biochemistry 1990, 29, 9225). Because 5'-"P-phosphorylated and excess 
hydroxyl-terminal strands were admixed, the symmetry of the two 5'-d(AT) 
sites in N4 = ATAT is broken and two products are observed.51' Yields (%) 
of the major cross-linked product in each lane/total yield of cross-linked 
products exclusive of end-cross-linked products (phosphorimager) were as 
follows: ATAT 0.31 and 0.38/1.44; TATA 0.18/0.93; AATT 0.35/0.91; 
TTAA 0.04 and 0.04/0.39; CATG 0.16/0.91; GATC -/2.02; AGCT 0.08/ 
1.19; ACGT -/1.45; GCGC -/1.14; CGCG 0.19/1.76; CCGG 0.18/2.03. 
These yields emphasize the distinction between duplexes which are efficiently 
cross-linked (N4 = GATC and CCGG) and specific sites within duplexes 
(5'-d(AT)], which are preferentially cross-linked. 
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Figure 3. Overlay of B-DNA [5'-d(AT)]2 superimposed upon the linked 
I.7 Upper: View from the major groove. Lower: View down helix axis. 

single interstrand-cross-linked product stood out in the duplexes 
N4 = TATA and CATG, but these bands were comparable in 
intensity to those in the duplexes N4 = CGCG and CCGG.4 The 
nucleotide connectivity of cross-linked N4 = ATAT was revealed 
by sequence-random fragmentation.5' The quantified distribution 
of products (Figure 2) (ca. 50% intensity of dT(8) and dA(8'); 
ca. 0% intensity of dT(7'); etc.) was consistent with an equia-
bundant mixture of dA-to-dA cross-links at the pseudo-symme­
try-related4 5'-d(AT) sequences. 

Cross-linked N4 = ATAT was digested with snake venom (type 
I) and spleen (type II) phosphodiesterases and calf intestinal 
alkaline phosphatase.3*1 Separation of the resulting mixture by 
RP-HPLC afforded substance 2, based upon3d (a) m/e 515 (M 
+ 1, electrospray ionization) consistent with bridging of two dA 
residues by a single methylene linkage, (b) 500-MHz 1H NMR 
spectrum containing nine6 resonances indicative of C2 symmetry, 
and (c) reduction6 with aqueous sodium borohydride, which af­
forded a mixture of 2'-deoxyadenosine and M-methyl-2'-deoxy-
adenosine, defining N6 as the site of alkylation on both strands. 
Assuming that «260 f°r 2 is twice that of dA, 0.8 mol (expected: 
1.0) of 2 was detected (RP-HPLC) per mole of cross-linked 
duplex. 

(5) (a) Weidner, M. F.; Millard, J. T.; Hopkins, P. B. J. Am. Chem. Soc. 
1989, 111, 9270. (b) Millard, J. T.; Weidner, M. F.; Kirchner, J. J.; Ribeiro, 
S.; Hopkins, P. B. Nucleic Acids Res. 1991, 19, 1885. 

(6) Resonances for H2 and H8 were coincident (500 MHz, D2O). Samples 
of 2 for the NMR and NaBH4 experiments were from enzymatic digests of 
CH20-treated S'-d[(AT)12]. 2 from both sources coeluted in RP-HPLC and 
gave comparable mass spectra. 
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adenine groups (bold) of energy-minimized [5'-d(AT)]2 cross-linked as in 

The selectivity described herein was unexpected. Form­
aldehyde-treated DNA has previously afforded five pairings of 
dA, dC, and dG structurally analogous to and including 2.3d From 
these could arise six distinguishable interstrand cross-links even 
if cross-linkable amino groups must reside in one groove and in 
adjacent base pairs of B-DNA. The origin of 5'-d(AT) selectivity 
is unknown, but may reflect preferential monoadduct formation 
in AT-rich regions2b and/or what we speculate may be rapid 
closure of monoadducts at 5'-d(AT) to cross-links due to proximity 
effects. Molecular mechanics energy minimization7 of [5'-d(AT)]2 
CTOss-linked as in 1 (Figure 3) revealed propeller hypertwisting 
of the base pairs, but little torsional reorganization relative to 
B-DNA, suggesting the alternative explanation that thermody­
namic stability may favor accumulation of this linkage. 
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(7) Performed using the AMBER force field as previously described: 
Kirchner, J. J.; Solomon, M. S.; Hopkins, P. B. In Structure <£ Function 
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